Towards a theory of programming languages
Tom Hirschowitz

v LAMA, CNRS et Université de Savoie

1/44

The question
Lawvere theories
Generalising Lawvere theories

Perspectives

2/44

The question

The ladder of abstraction (© Brett Victor): level 1

Formal reasoning over practical things like

counting: integers,
moving: transformations of the plane,

exchanging: permutations.

3/44

The question

The ladder of abstraction: level 2

Common properties of:

- integers,

- rotations,
translations,
symmetries,
isometric,transformations.
permutations on a finite set...

Abstraction
Notion of group.

4/44

The question

The ladder of abstraction: towards level 3

- Generalisation: monoids (e.g., all transformations of the plane).
- Specialisation: rings, modules, algebras, ...

- Numerous abstract notions.

- Alot in common:
- free constructions (e.g., free monoid = words);
- notions of morphisms;
- downcasting (any ring is a group, at least).

5/44

The question

The ladder of abstraction: level 3

Abstraction over abstraction!

Two proposals:
— Lawvere theories;
- monads on sets.
Lawvere theories a little more general.

Programming language theory: still at level 2!

6/44

The question

Level 1: calculi

Programming languages ~» calculi:
- pure A-calculus,
A-calculus in cbv, cbn, lazy, fully lazy, optimal, ...
— A-calculus with let rec / refs / call/cg, ...
~ 0, Ao, AU[S ...
7T, join, Ambients, Spy, ...

Analogy

Reasoning over integers ~ Reasoning over programs in language L.

And that's only the untyped tip of the iceberg!

7/44

The question

Level 2: denotational semantics

- Denotational model of language L ~ mathematical structure supporting the
operations of L.
- L ~ “free' structure.

Common use of denotational semantics
Disprove a property of programs by finding a counter-model.

Groups: integers,permutations, ...

Rings: integers, polynomials, ...
Models of simply-typed A: cartesian closed categories, ...

Rk: not all calculi are at level 2 (i.e., equipped with a notion of model).

8/44

The question

Towards level 3?

Groups: integers,permutations, ...

. .) Lawvere theories
Rings: integers, polynomials, ...

X-calculus: models of X, Lawvere theory?

No, for at least two reasons:
- variable binding (Ax. x = Ax. x);
- dynamics (Ax. M)N ~ M [x — NJ: need for ‘directed' equations.

[Need to generalise Lawvere theories!]

9/44

The question

Hence the question

- What is a programming language?
- What is a translation between two programming languages?
- General results?

[Let us start with a (fake) poll... J

10/44

The question

Fake poll: what is a programming language?

Low-level answer

- alanguage on a finite alphabet,
— a translation to x86 (...).

- Why definitely fix x86?
- Low-level does evolve a lot (shit, it's amd64 already...).
- Sometimes overkill, e.g., language of regular expressions.
- Not canonical.
- Limited: e.g., distributed computing.
- Not won at the level of high-level reasoning on programs.

11/44

The question

Fake poll: what is a programming language?

Frequent answer by researchers in programming languages
One super complex language supposed to model all other languages.

- Hlusory.
- Adding features may change global properties: study of fragments.
- Eludes the crucial question of what morphisms should be.

12/44

The question

Fake poll: what is a programming language?

Other frequent answer mostly in the UK
A structural operational semantics (Plotkin, 1981), in a certain format.

- Low-level notion of syntax with binding.
- Morphisms: only starting to be investigated.
- Far from mainstream mathematics.

13/44

The question

Fake poll: what is a programming language?

Other frequent answer
A higher-order rewrite system (Nipkow, 1991).

Close answer: a combinatory reduction system (Klop, 1980).
- Roughly, rewriting terms with variable binding.
- No notion of morphism, even google does not find anything.
- Far from mainstream mathematics.

14/44

The question

About the last two,
- structural operational semantics (SOS) and
- higher-order rewriting (HOR).

- General results, but on one language:
- congruence of bisimilarity (SOS),
- confluence, finite developments, etc (HOR).
— Better, hints at level 3:
- mathematical operational semantics (SOS, Turi and Plotkin),
- cartesian closed 2-categories (HOR, main subject here).

15/44

Lawvere theories

Lawvere theories in 20 slides

Starters: introduction to category theory, then Lawvere theories.

16/44

Lawvere theories

Categories

Category: a (directed, multi) graph equipped with
- a composition law on edges,
- identities.

17/44

Lawvere theories

Examples

- The category Grp.
- Vertices / objects: groups.
- Edges / morphisms: morphisms of groups.
- Large category.
- Similar examples: monoids, rings, etc.
- Topological spaces and continuous functions: Top.
- Graphs: Gph.
- Even plain sets: Set.

18/44

Lawvere theories

Cartesian product (in any category!)

- Consider any objects A, B € C;
~ A<= C-™5 B is a product of A and B iff
vD

3th

A C

- Notation: C = AxB and h = (f, g).

- Set, Grp, Top,...
- Graphs.

19/44

Lawvere theories

Terminal object

- A is a terminal object in C iff VB ----—----- > A.
- Notation: A =1, f = |B.

- Sets: singleton.
- Graphs: what would you guess?

20/44

Lawvere theories

Finite products = products + terminal objects

Category with finite products:
— a product (AxB, 7, 7t') for all A, B,
- a terminal object 1.

21/44

Lawvere theories

First insight of Lawvere theories

Observation
Any model of an algebraic theory “is' a category with finite products.

Le.,
- Any monoid is a category with finite products.
- Any ring is a category with finite products.

22./44

Lawvere theories

First insight of Lawvere theories

Observation
Any model of an algebraic theory “is' a category with finite products.

Category Cy for the monoid of natural numbers and +:
- objects are finite “powers' of N, e.g., NxNxN;
- morphisms are functions generated by
- addition NxN — N,
- zero 1 — N (the map picking 0),

- identities and composition,

- pairing (f;, ..., f,) : N — N©
- projections 7, ; : N — N,

~ the unique map N? — 1.

This is a subcategory of Set. 22/44

Lawvere theories

The category Cy (looking closer)

Any morphism f : N” — N" decomposes as (fi, ..., f,).
Example morphism pluso (7, pluso (7 (zeroo!(N?)))) : N* — N.
Ak.a. plus (x, (plus (y, zero))).

- Aka. N

plus

plus

AN

Z€ro

\
N X N X 1
~ circuits with sharing restricted to inputs.

- Variables: dealt with by projections.
23/44

Lawvere theories

Any monoid X “is' a category Cy with finite products

General construction

Category Cx for the monoid (X, m, e):
- objects are finite ‘powers’ of X, e.g., XxXxX;
- morphisms are functions generated by
- m: XxX — X,
- e:1 — X (the map picking e),
- identities and composition,
- pairing (f;, ..., f,) : X* — X
- projections 7, ; : X" — X,
- the unique map X? — 1.

Again a subcategory of Set.

24/44

Lawvere theories

The Lawvere theory for monoids

The category £ ,n0ia defined by:

- Objects: one object, say t, and its formal finite powers tx...xt.
- Morphisms tx...xt — t: terms generated by

- binary m,

- constant e,

— in n (ordered) variables,

up to a few equations.

- Morphisms t" — t" p-tuples of terms.
- Composition = simultaneous substitution.

Not directly a subcategory of sets.

25/44

Lawvere theories

The Lawvere theory for monoids

In L0014, €xample morphism

t cf. N

plus

|
/ ™, ™~
INLNS

N X N X 1

Observation
There seems to be a "'map’ L onoid — Cn-

26/44

Lawvere theories

Generalised monoids

A generalised monoid is
- a category C with finite products,
- an object X € G,
- morphisms comp : XxX — X and unit : 1 — X,
- satisfying the obvious associativity and unitality equations.

- GN)
- Gy, for any monoid X,

- Lmonoid'
- A bigger one: Set with, e.g., N and addition.

27/44

Lawvere theories

Morphisms

A morphism of generalised monoids is
- a functor F: € — D between underlying categories,

Wait wait, what's a functor?

28/44

Lawvere theories

Functors

A functor € — D is a “morphism of categories":
- a map from objects of C to objects of D,

- amap between morphisms (preserving source and target),
preserving composition and identities.

The “map' £,0n0iqa — Cy determined by

t — N
|
plus

t x t x 1

m_ .
m plus
/ /o [aero

N x N x 1

29/44

Lawvere theories

Morphisms

A morphism of generalised monoids is
- a functor F: € — D between underlying categories,
- preserving products: F(AxB) = F(A)xF(B) (subtlety here, who can guess?),
- mapping X, comp, and unit in C to their counterparts in D.

Example
Again, the functor £,,,,..a — Cy determined by
t — N
11‘1 ~ pl‘us -
m plus
/ / \e / zero
t x t x 1‘ N x N x 1‘
In particular txt — NxN.

30/44

Lawvere theories

The Lawvere theory for monoids

Proposition

Generalised monoids

~

categories C with a finite-product preserving functor £ .4 — C.

Intuitively, £ .m0 Serves as a definition of monoids.

31/44

Lawvere theories

Further example

What should be the Lawvere theory £, for rings?

- Objects: one object, say t, and its formal finite powers tx...xt.
- Morphisms tXx...xt — t: terms generated by

- binary mult and add,

- constants one and zero,

- in n (ordered) variables,

up to a few equations.

- Morphisms t" — t% p-tuples of terms.
- Composition = simultaneous substitution.

32/44

Lawvere theories

Lawvere theories: definition

Lawvere theory: a category with
- finite products,
- objects formally generated by a set of “sorts'.

E.g., txuxt, for sorts t and u.

33/44

Lawvere theories

What has been gained (quick summary)
- Signature + equations, i.e., theory — category of models

L

theory

model 1 model 2

¢ D

functor preserving finite products

There are more general notions of morphisms...
- A notion of morphism between Lawvere theories: functors preserving
finite-products; e.g.,
Lmonoid = Lring'

34/44

Lawvere theories

What is missing?

~ Variable binding (Ax. x = AX’. x).
- Dynamics (Ax. M)N ~ M[x — NI.

[Need to generalise Lawvere theories! J

35/44

Generalising Lawvere theories

Variable binding

We defined products by a property.
- Consider any objects A, B € C with finite products;

CxA - B is an exponential of A and B iff VD € C,

ev
CxA—B
A
thxidAi e
DxA

- Notation: C = B* and h = Af.
~ Intuition: B* = function space, Af = currying of f.

36/44

Generalising Lawvere theories

Variable binding

We defined products by a property.
- Consider any objects A, B € C with finite products;
B"XA -, B is an exponential of A and B iff VD € @,

A

JINFxida |

BAXxA———B
v

DxA

- Notation: C = B* and h = Af.
~ Intuition: B* = function space, Af = currying of f.

36/44

Generalising Lawvere theories

Examples

- Set: B* = set of functions A — B.

- Gph, graphs: some convoluted construction of rare use (to my knowledge).
- Not Top! Have to restrict to compactly generated spaces.

Scott domains. Particular posets, important in denotational semantics.

37/44

Generalising Lawvere theories

Cartesian closed categories = products + terminal object +
exponentials

Cartesian closed category (CCC):
- a product (AxB, m, ') for all A, B,
- a terminal object 1,
~ an exponential (B, ev) for all A, B.

38/44

Generalising Lawvere theories

Variable binding

Models of theories with binding “are' cartesian closed categories.

The syntax for the pure A-calculus yields a cartesian closed category Ly:

- objects are formal powers and exponentials of t, e.g., t'xt, (txtxt)tXt,...

- morphisms are formally generated by
- lam:t" — t and app : txt — t,
- stuff needed for £, to be a CCC.

- Remark: £, contains more than the usual notion of syntax.
- Morphisms = simply-typed A-terms up to [3n-conversion.
- E.g, M. M is here modelled as lam (Ax : t. [M]).

39/44

Generalising Lawvere theories

Dynamics

To model
(Ax. M)N ~ M[x — N]

we could add an equation

app(lam(Ax :t. M), N) = (Ax :t. M)N.

We prefer adding a 2-cell:

~» Cartesian closed 2-categories!

40/44

Generalising Lawvere theories

Example reduction

~ In pure A, if M ~ M’ then MN ~ M'N.
- Here, assuming o : M = N, derive

(M,N)
(M,N)

app (a; idy) : app(M; N) = app(M’; N).

41/44

Generalising Lawvere theories

Other example reduction

~ In pure A, if M~ M’ then Ax. M~ Ax. M.

- Here, assuming /M\
I'xt ”‘x t
derive _/
M/

Ax s t. o lam(Ax :t. M) = lam(Ax : t. M).

42/44

Generalising Lawvere theories

Proposition

2-cells M = N

~

reductions up to permutation equivalence (Lévy, late 70's; Bruggink, 2003).

43/44

Perspectives

Possible perspectives

More involved examples.

Dynamic properties of 2CCCs (following Hilken).
Dynamic properties of morphisms.

Formal links with other approaches.

Extensions, e.g., dependent types.

Coq library?

44/44

	
	
	
	The question
	The ladder of abstraction (© Brett Victor): level 1
	The ladder of abstraction: level 2
	The ladder of abstraction: towards level 3
	The ladder of abstraction: level 3
	Level 1: calculi
	Level 2: denotational semantics
	Towards level 3?
	Hence the question
	Fake poll: what is a programming language?
	Fake poll: what is a programming language?
	Fake poll: what is a programming language?
	Fake poll: what is a programming language?
	

	Lawvere theories
	Lawvere theories in 20 slides
	Categories
	Examples
	Cartesian product (!)
	Terminal object
	Finite products = products + terminal objects
	First insight of Lawvere theories
	The category (looking closer)
	 monoid `is' a category with finite products
	The Lawvere theory for monoids
	The Lawvere theory for monoids
	Generalised monoids
	Morphisms
	Functors
	Morphisms
	The Lawvere theory for monoids
	Further example
	Lawvere theories: definition
	What has been gained (quick summary)
	What is missing?

	Generalising Lawvere theories
	Variable binding
	Examples
	Cartesian closed categories = products + terminal object
	Variable binding
	Dynamics
	Example reduction
	Other example reduction
	

	Perspectives
	Possible perspectives

