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The ladder of abstraction (© Brett Victor): level 1

Formal reasoning over practical things like

3/44

The question

:
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The ladder of abstraction: level 2

Common properties of:
integers,
rotations,
translations,
symmetries,
isometric,transformations.
permutations on a finite set...
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The question

Abstraction
Notion of group.
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The ladder of abstraction: towards level 3
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The question

Neighbours

Generalisation: monoids (e.g., all transformations of the plane).
Specialisation: rings, modules, algebras, ...

Problem
Numerous abstract notions.
A lot in common:

free constructions (e.g., free monoid = words);
notions of morphisms;
downcasting (any ring is a group, at least).
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The ladder of abstraction: level 3

Programming language theory: still at level 2!
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The question

Abstraction over abstraction!
Two proposals:

Lawvere theories;
monads on sets.

Lawvere theories a little more general.
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Level 1: calculi

Programming languages ↝ calculi:
pure λ-calculus,λ-calculus in cbv, cbn, lazy, fully lazy, optimal, ...λ-calculus with let rec / refs / call/cc, ...ζ, λσ, λμμ, ...π, join, Ambients, Spy, ...

And that's only the untyped tip of the iceberg!
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The question

Analogy

Reasoning over integers ≈ Reasoning over programs in language L.
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Level 2: denotational semantics

Denotational model of language L ≈ mathematical structure supporting the
operations of L.L ≈ `free' structure.

Rk: not all calculi are at level 2 (i.e., equipped with a notion of model).
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The question

Common use of denotational semantics
Disprove a property of programs by finding a counter-model.

:
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spuorG ...,snoitatumrep,sregetni

:sgniR ...,slaimonylop,sregetni

:λdepyt-ylpmisfosledoM ...,seirogetacdesolcnaisetrac



Towards level 3?

No, for at least two reasons: ' ' variable binding (λx . x ≡ λx . x );( ) ] [ dynamics λx . M N ↝ M x ↦ N : need for `directed' equations.
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The question

:

Need to generalise Lawvere theories!
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spuorG ...,snoitatumrep,sregetni

:sgniR ...,slaimonylop,sregetni

:suluclac-X ,Xfosledom

seiroehterevwaL

?yroehterevwaL



Hence the question

What is a programming language?
What is a translation between two programming languages?
General results?
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The question

Let us start with a (fake) poll...
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Fake poll: what is a programming language?

Why definitely fix x86?
Low-level does evolve a lot (shit, it's amd64 already...).
Sometimes overkill, e.g., language of regular expressions.
Not canonical.
Limited: e.g., distributed computing.

Not won at the level of high-level reasoning on programs.
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The question

Low-level answer
a language on a finite alphabet,
a translation to x86 (...).
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Fake poll: what is a programming language?

Illusory.
Adding features may change global properties: study of fragments.
Eludes the crucial question of what morphisms should be.
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The question

Frequent answer by researchers in programming languages

One super complex language supposed to model all other languages.
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Fake poll: what is a programming language?

Low-level notion of syntax with binding.
Morphisms: only starting to be investigated.
Far from mainstream mathematics.
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The question

Other frequent answer mostly in the UK

A structural operational semantics (Plotkin, 1981), in a certain format.
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Fake poll: what is a programming language?

Close answer: a combinatory reduction system (Klop, 1980).
Roughly, rewriting terms with variable binding.
No notion of morphism, even google does not find anything.
Far from mainstream mathematics.
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The question

Other frequent answer

A higher-order rewrite system (Nipkow, 1991).
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About the last two,
structural operational semantics (SOS) and
higher-order rewriting (HOR).
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The question

General results, but on one language:
congruence of bisimilarity (SOS),
confluence, finite developments, etc (HOR).

Better, hints at level 3:
mathematical operational semantics (SOS, Turi and Plotkin),
cartesian closed 2-categories (HOR, main subject here).
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Lawvere theories in 20 slides

Starters: introduction to category theory, then Lawvere theories.
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Categories
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Lawvere theories

Definition
Category: a (directed, multi) graph equipped with

a composition law on edges,
identities.
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B
A Cf g

f∘g



Examples

The category Grp.
Vertices / objects: groups.
Edges / morphisms: morphisms of groups.

Large category.
Similar examples: monoids, rings, etc.
Topological spaces and continuous functions: Top.
Graphs: Gph.
Even plain sets: Set.
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Cartesian product (in any category!)

Consider any objects A, B ∈ C;' π πA C B is a product of A and B iff

\rangle \langle Notation: C = A×B and h = f, g .
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Lawvere theories

Example

Set, Grp, Top,...
Graphs.
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D∀

A C B
f∀ g∀
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Terminal object

A is a terminal object in C iff
Notation: A = 1, f = !B.
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Lawvere theories

B
Example

Sets: singleton.
Graphs: what would you guess?
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Finite products = products + terminal objects
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Lawvere theories

Definition
Category with finite products:' ( ) a product A×B, π , π for all A, B,

a terminal object 1.
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First insight of Lawvere theories

I.e.,
Any monoid is a category with finite products.
Any ring is a category with finite products.
...
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Lawvere theories

Observation
Any model of an algebraic theory `is' a category with finite products.
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First insight of Lawvere theories

22/44This is a subcategory of Set.

Lawvere theories

Observation
Any model of an algebraic theory `is' a category with finite products.

Example

Category C for the monoid of natural numbers and +:ℕ 
objects are finite `powers' of ℕ , e.g., ℕ ×ℕ ×ℕ ;
morphisms are functions generated by

addition ℕ ×ℕ → ℕ ,
zero 1 → ℕ (the map picking 0),
identities and composition,p n\rangle \langle pairing f , …, f : ℕ → ℕ ,1 n nprojections π : ℕ → ℕ ,n,i pthe unique map ℕ → 1.

The question Generalising Lawvere theories Perspectives



The category C (looking closer)ℕ 

p n \rangle \langle Any morphism f : ℕ → ℕ decomposes as f , …, f .1 n2 2\rangle \rangle \langle \langle ' ( ( ) ) Example morphism plus∘ π , plus∘ π , zero∘! ℕ : ℕ → ℕ .( ( ( ) ) ) A.k.a. plus x, plus y , zero .

A.k.a.

≈ circuits with sharing restricted to inputs.
Variables: dealt with by projections.
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Any monoid X `is' a category C with finite productsX

Again a subcategory of Set.
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Lawvere theories

General construction ( ) Category C for the monoid X, m , e :X
objects are finite `powers' of X, e.g., X×X×X;
morphisms are functions generated bym : X×X → X,e : 1 → X (the map picking e),

identities and composition,p n\rangle \langle pairing f , …, f : X → X ,1 n nprojections π : X → X,n,i pthe unique map X → 1.
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The Lawvere theory for monoids

Not directly a subcategory of sets.
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Lawvere theories

Definition
The category L defined by:monoid

Objects: one object, say t, and its formal finite powers t×…×t.
Morphisms t×…×t → t: terms generated by

binary m ,
constant e,
in n (ordered) variables,

up to a few equations.n pMorphisms t → t : p-tuples of terms.
Composition = simultaneous substitution.
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The Lawvere theory for monoids

In L , example morphismmonoid

cf.
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Lawvere theories

Observation
There seems to be a `map'L → C .monoid ℕ 
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Generalised monoids
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Lawvere theories

Definition
A generalised monoid is

a category C with finite products,
an object X ∈ C,
morphisms comp : X×X → X and unit : 1 → X,
satisfying the obvious associativity and unitality equations.

ExampleC ,ℕ C , for any monoid X,XL .monoid

A bigger one: Set with, e.g., ℕ and addition.
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Morphisms

Wait wait, what's a functor?
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Lawvere theories

Definition
A morphism of generalised monoids is

a functor F : C → D between underlying categories,
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Functors
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Lawvere theories

Definition
A functor C → D is a `morphism of categories':

a map from objects of C to objects of D,
a map between morphisms (preserving source and target),

preserving composition and identities.

Example

The `map'L → C determined bymonoid ℕ 

t ↦ ℕ m plusm pluse zerot × t × 1 ℕ × ℕ × 1
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Morphisms
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Lawvere theories

Definition
A morphism of generalised monoids is

a functor F : C → D between underlying categories,( ) ( ) ( ) preserving products: F A×B = F A ×F B (subtlety here, who can guess?),
mapping X, comp, and unit in C to their counterparts in D.

Example

Again, the functor L → C determined bymonoid ℕ 

t ↦ ℕ m plusm pluse zerot × t × 1 ℕ × ℕ × 1
In particular t×t ↦ ℕ ×ℕ .
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The Lawvere theory for monoids

Intuitively, L serves as a definition of monoids.monoid
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Lawvere theories

Proposition

Generalised monoids≃
categories C with a finite-product preserving functor L → C.monoid
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Further example

What should be the Lawvere theory L for rings?rings

Objects: one object, say t, and its formal finite powers t×…×t.
Morphisms t×…×t → t: terms generated by

binary mult and add,
constants one and zero,
in n (ordered) variables,

up to a few equations.n pMorphisms t → t : p-tuples of terms.
Composition = simultaneous substitution.
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Lawvere theories: definition

E.g., t×u×t, for sorts t and u .
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Lawvere theories

Definition
Lawvere theory: a category with

finite products,
objects formally generated by a set of `sorts'.
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What has been gained (quick summary)

Signature + equations, i.e., theory ↦ category of models

There are more general notions of morphisms...
A notion of morphism between Lawvere theories: functors preserving
finite-products; e.g., L ↪ L .monoid ring
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What is missing?

' ' Variable binding (λx . x ≡ λx . x ).( ) ] [ Dynamics λx . M N ↝ M x ↦ N .
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Lawvere theories

Need to generalise Lawvere theories!

The question Generalising Lawvere theories Perspectives



Variable binding

We defined products by a property.
Consider any objects A, B ∈ C with finite products;

evC×A B is an exponential of A and B iff ∀ D ∈ C,

ANotation: C = B and h = λf.AIntuition: B = function space, λf = currying of f.
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Generalising Lawvere theories

A

The question Lawvere theories Perspectives

×C B

A×D
f∀
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Variable binding

We defined products by a property.
Consider any objects A, B ∈ C with finite products;A evB ×A B is an exponential of A and B iff ∀ D ∈ C,

ANotation: C = B and h = λf.AIntuition: B = function space, λf = currying of f.
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Generalising Lawvere theories

A
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×BA B

A×D
f∀

ve

di A×fλ!∃



Examples

ASet: B = set of functions A → B.
Gph, graphs: some convoluted construction of rare use (to my knowledge).
Not Top! Have to restrict to compactly generated spaces.
Scott domains. Particular posets, important in denotational semantics.
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Cartesian closed categories = products + terminal object +
exponentials
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Generalising Lawvere theories

Definition
Cartesian closed category (CCC):' ( ) a product A×B, π , π for all A, B,

a terminal object 1,A( ) an exponential B , ev for all A, B.
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Variable binding

Remark: L contains more than the usual notion of syntax.λ
Morphisms = simply-typed λ-terms up to βη-conversion.\left_white_square_bracket \left_white_square_bracket ( ) E.g., λx . M is here modelled as lam λx : t . M .
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Generalising Lawvere theories

Synopsis

Models of theories with binding `are' cartesian closed categories.

Example

The syntax for the pure λ-calculus yields a cartesian closed category L :λ
tt×tt ( ) objects are formal powers and exponentials of t, e.g., t ×t, t×t×t ,...

morphisms are formally generated bytlam : t → t and app : t×t → t,
stuff needed for L to be a CCC.λ
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Dynamics

To model ( ) ] [ λx . M N ↝ M x ↦ N
we could add an equation

\rangle \langle ( ) ( ) app lam λx : t . M , N = λx : t . M N.

We prefer adding a 2-cell:

↝ Cartesian closed 2-categories!
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Example reduction

' ' In pure λ, if M ↝ M then MN ↝ M N.
Here, assuming α : M ⇒ N, derive
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Generalising Lawvere theories

Γ
Syntactically\rangle \rangle \rangle \langle \langle \langle ' app α ; id : app M ; N ⇒ app M ; N .N

The question Lawvere theories Perspectives

t×t t
\rangle N,M\langle 

\rangle N,M' \langle 

ppa\rangle di N,α\langle 



Other example reduction

' ' In pure λ, if M ↝ M then λx . M ↝ λx . M.
Here, assuming

derive
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Generalising Lawvere theories

t

Γ
Syntactically ' ( ) ( ) λx : t . α : lam λx : t . M ⇒ lam λx : t . M .
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α

M' .t:xλ
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Generalising Lawvere theories

Proposition

2-cells M ⇒ N≅
reductions up to permutation equivalence (Lévy, late 70's; Bruggink, 2003).
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Possible perspectives

More involved examples.
Dynamic properties of 2CCCs (following Hilken).
Dynamic properties of morphisms.
Formal links with other approaches.
Extensions, e.g., dependent types.
Coq library?
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