
Towards a theory of programming languages

Tom Hirschowitz

LAMA, CNRS et Université de Savoie

1/44

The question Lawvere theories Generalising Lawvere theories Perspectives

2/44

1 The question

2 Lawvere theories

3 Generalising Lawvere theories

4 Perspectives

The question Lawvere theories Generalising Lawvere theories Perspectives

The ladder of abstraction (© Brett Victor): level 1

Formal reasoning over practical things like

3/44

The question

:

Lawvere theories Generalising Lawvere theories Perspectives

gnitnuoc ,sregetni

:gnivom ,enalpehtfosnoitamrofsnart

:gnignahcxe .snoitatumrep

The ladder of abstraction: level 2

Common properties of:
integers,
rotations,
translations,
symmetries,
isometric,transformations.
permutations on a finite set...

4/44

The question

Abstraction
Notion of group.

Lawvere theories Generalising Lawvere theories Perspectives

The ladder of abstraction: towards level 3

5/44

The question

Neighbours

Generalisation: monoids (e.g., all transformations of the plane).
Specialisation: rings, modules, algebras, ...

Problem
Numerous abstract notions.
A lot in common:

free constructions (e.g., free monoid = words);
notions of morphisms;
downcasting (any ring is a group, at least).

Lawvere theories Generalising Lawvere theories Perspectives

The ladder of abstraction: level 3

Programming language theory: still at level 2!

6/44

The question

Abstraction over abstraction!
Two proposals:

Lawvere theories;
monads on sets.

Lawvere theories a little more general.

Lawvere theories Generalising Lawvere theories Perspectives

Level 1: calculi

Programming languages ↝ calculi:
pure λ-calculus,λ-calculus in cbv, cbn, lazy, fully lazy, optimal, ...λ-calculus with let rec / refs / call/cc, ...ζ, λσ, λμμ, ...π, join, Ambients, Spy, ...

And that's only the untyped tip of the iceberg!

7/44

The question

Analogy

Reasoning over integers ≈ Reasoning over programs in language L.

Lawvere theories Generalising Lawvere theories Perspectives

Level 2: denotational semantics

Denotational model of language L ≈ mathematical structure supporting the
operations of L.L ≈ `free' structure.

Rk: not all calculi are at level 2 (i.e., equipped with a notion of model).

8/44

The question

Common use of denotational semantics
Disprove a property of programs by finding a counter-model.

:

Lawvere theories Generalising Lawvere theories Perspectives

spuorG ...,snoitatumrep,sregetni

:sgniR ...,slaimonylop,sregetni

:λdepyt-ylpmisfosledoM ...,seirogetacdesolcnaisetrac

Towards level 3?

No, for at least two reasons: ' ' variable binding (λx . x ≡ λx . x);()] [dynamics λx . M N ↝ M x ↦ N : need for `directed' equations.

9/44

The question

:

Need to generalise Lawvere theories!

Lawvere theories Generalising Lawvere theories Perspectives

spuorG ...,snoitatumrep,sregetni

:sgniR ...,slaimonylop,sregetni

:suluclac-X ,Xfosledom

seiroehterevwaL

?yroehterevwaL

Hence the question

What is a programming language?
What is a translation between two programming languages?
General results?

10/44

The question

Let us start with a (fake) poll...

Lawvere theories Generalising Lawvere theories Perspectives

Fake poll: what is a programming language?

Why definitely fix x86?
Low-level does evolve a lot (shit, it's amd64 already...).
Sometimes overkill, e.g., language of regular expressions.
Not canonical.
Limited: e.g., distributed computing.

Not won at the level of high-level reasoning on programs.

11/44

The question

Low-level answer
a language on a finite alphabet,
a translation to x86 (...).

Lawvere theories Generalising Lawvere theories Perspectives

Fake poll: what is a programming language?

Illusory.
Adding features may change global properties: study of fragments.
Eludes the crucial question of what morphisms should be.

12/44

The question

Frequent answer by researchers in programming languages

One super complex language supposed to model all other languages.

Lawvere theories Generalising Lawvere theories Perspectives

Fake poll: what is a programming language?

Low-level notion of syntax with binding.
Morphisms: only starting to be investigated.
Far from mainstream mathematics.

13/44

The question

Other frequent answer mostly in the UK

A structural operational semantics (Plotkin, 1981), in a certain format.

Lawvere theories Generalising Lawvere theories Perspectives

Fake poll: what is a programming language?

Close answer: a combinatory reduction system (Klop, 1980).
Roughly, rewriting terms with variable binding.
No notion of morphism, even google does not find anything.
Far from mainstream mathematics.

14/44

The question

Other frequent answer

A higher-order rewrite system (Nipkow, 1991).

Lawvere theories Generalising Lawvere theories Perspectives

About the last two,
structural operational semantics (SOS) and
higher-order rewriting (HOR).

15/44

The question

General results, but on one language:
congruence of bisimilarity (SOS),
confluence, finite developments, etc (HOR).

Better, hints at level 3:
mathematical operational semantics (SOS, Turi and Plotkin),
cartesian closed 2-categories (HOR, main subject here).

Lawvere theories Generalising Lawvere theories Perspectives

Lawvere theories in 20 slides

Starters: introduction to category theory, then Lawvere theories.

16/44

Lawvere theoriesThe question Generalising Lawvere theories Perspectives

Categories

17/44

Lawvere theories

Definition
Category: a (directed, multi) graph equipped with

a composition law on edges,
identities.

The question Generalising Lawvere theories Perspectives

B
A Cf g

f∘g

Examples

The category Grp.
Vertices / objects: groups.
Edges / morphisms: morphisms of groups.

Large category.
Similar examples: monoids, rings, etc.
Topological spaces and continuous functions: Top.
Graphs: Gph.
Even plain sets: Set.

18/44

Lawvere theoriesThe question Generalising Lawvere theories Perspectives

Cartesian product (in any category!)

Consider any objects A, B ∈ C;' π πA C B is a product of A and B iff

\rangle \langle Notation: C = A×B and h = f, g .

19/44

Lawvere theories

Example

Set, Grp, Top,...
Graphs.

The question Generalising Lawvere theories Perspectives

D∀

A C B
f∀ g∀

π π'
h!∃

Terminal object

A is a terminal object in C iff
Notation: A = 1, f = !B.

20/44

Lawvere theories

B
Example

Sets: singleton.
Graphs: what would you guess?

The question Generalising Lawvere theories Perspectives

∀ .Af!∃

Finite products = products + terminal objects

21/44

Lawvere theories

Definition
Category with finite products:' () a product A×B, π , π for all A, B,

a terminal object 1.

The question Generalising Lawvere theories Perspectives

First insight of Lawvere theories

I.e.,
Any monoid is a category with finite products.
Any ring is a category with finite products.
...

22/44

Lawvere theories

Observation
Any model of an algebraic theory `is' a category with finite products.

The question Generalising Lawvere theories Perspectives

First insight of Lawvere theories

22/44This is a subcategory of Set.

Lawvere theories

Observation
Any model of an algebraic theory `is' a category with finite products.

Example

Category C for the monoid of natural numbers and +:ℕ
objects are finite `powers' of ℕ , e.g., ℕ ×ℕ ×ℕ ;
morphisms are functions generated by

addition ℕ ×ℕ → ℕ ,
zero 1 → ℕ (the map picking 0),
identities and composition,p n\rangle \langle pairing f , …, f : ℕ → ℕ ,1 n nprojections π : ℕ → ℕ ,n,i pthe unique map ℕ → 1.

The question Generalising Lawvere theories Perspectives

The category C (looking closer)ℕ

p n \rangle \langle Any morphism f : ℕ → ℕ decomposes as f , …, f .1 n2 2\rangle \rangle \langle \langle ' (()) Example morphism plus∘ π , plus∘ π , zero∘! ℕ : ℕ → ℕ .((())) A.k.a. plus x, plus y , zero .

A.k.a.

≈ circuits with sharing restricted to inputs.
Variables: dealt with by projections.

23/44

Lawvere theoriesThe question Generalising Lawvere theories Perspectives

ℕ

sulp

sulp

orez

ℕ × ℕ × 1

Any monoid X `is' a category C with finite productsX

Again a subcategory of Set.

24/44

Lawvere theories

General construction () Category C for the monoid X, m , e :X
objects are finite `powers' of X, e.g., X×X×X;
morphisms are functions generated bym : X×X → X,e : 1 → X (the map picking e),

identities and composition,p n\rangle \langle pairing f , …, f : X → X ,1 n nprojections π : X → X,n,i pthe unique map X → 1.

The question Generalising Lawvere theories Perspectives

The Lawvere theory for monoids

Not directly a subcategory of sets.

25/44

Lawvere theories

Definition
The category L defined by:monoid

Objects: one object, say t, and its formal finite powers t×…×t.
Morphisms t×…×t → t: terms generated by

binary m ,
constant e,
in n (ordered) variables,

up to a few equations.n pMorphisms t → t : p-tuples of terms.
Composition = simultaneous substitution.

The question Generalising Lawvere theories Perspectives

The Lawvere theory for monoids

In L , example morphismmonoid

cf.

26/44

Lawvere theories

Observation
There seems to be a `map'L → C .monoid ℕ

The question Generalising Lawvere theories Perspectives

t ℕ

m sulp

m sulp

e
t ×

o

t
re

×
z

1 ℕ × ℕ × 1

Generalised monoids

27/44

Lawvere theories

Definition
A generalised monoid is

a category C with finite products,
an object X ∈ C,
morphisms comp : X×X → X and unit : 1 → X,
satisfying the obvious associativity and unitality equations.

ExampleC ,ℕ C , for any monoid X,XL .monoid

A bigger one: Set with, e.g., ℕ and addition.

The question Generalising Lawvere theories Perspectives

Morphisms

Wait wait, what's a functor?

28/44

Lawvere theories

Definition
A morphism of generalised monoids is

a functor F : C → D between underlying categories,

The question Generalising Lawvere theories Perspectives

Functors

29/44

Lawvere theories

Definition
A functor C → D is a `morphism of categories':

a map from objects of C to objects of D,
a map between morphisms (preserving source and target),

preserving composition and identities.

Example

The `map'L → C determined bymonoid ℕ

t ↦ ℕ m plusm pluse zerot × t × 1 ℕ × ℕ × 1

The question Generalising Lawvere theories Perspectives

Morphisms

30/44

Lawvere theories

Definition
A morphism of generalised monoids is

a functor F : C → D between underlying categories,() () () preserving products: F A×B = F A ×F B (subtlety here, who can guess?),
mapping X, comp, and unit in C to their counterparts in D.

Example

Again, the functor L → C determined bymonoid ℕ

t ↦ ℕ m plusm pluse zerot × t × 1 ℕ × ℕ × 1
In particular t×t ↦ ℕ ×ℕ .

The question Generalising Lawvere theories Perspectives

The Lawvere theory for monoids

Intuitively, L serves as a definition of monoids.monoid

31/44

Lawvere theories

Proposition

Generalised monoids≃
categories C with a finite-product preserving functor L → C.monoid

The question Generalising Lawvere theories Perspectives

Further example

What should be the Lawvere theory L for rings?rings

Objects: one object, say t, and its formal finite powers t×…×t.
Morphisms t×…×t → t: terms generated by

binary mult and add,
constants one and zero,
in n (ordered) variables,

up to a few equations.n pMorphisms t → t : p-tuples of terms.
Composition = simultaneous substitution.

32/44

Lawvere theoriesThe question Generalising Lawvere theories Perspectives

Lawvere theories: definition

E.g., t×u×t, for sorts t and u .

33/44

Lawvere theories

Definition
Lawvere theory: a category with

finite products,
objects formally generated by a set of `sorts'.

The question Generalising Lawvere theories Perspectives

What has been gained (quick summary)

Signature + equations, i.e., theory ↦ category of models

There are more general notions of morphisms...
A notion of morphism between Lawvere theories: functors preserving
finite-products; e.g., L ↪ L .monoid ring

34/44

Lawvere theoriesThe question Generalising Lawvere theories Perspectives

L yroeht

C D
1ledom 2ledom

stcudorpetinfignivreserprotcnuf

What is missing?

' ' Variable binding (λx . x ≡ λx . x).()] [Dynamics λx . M N ↝ M x ↦ N .

35/44

Lawvere theories

Need to generalise Lawvere theories!

The question Generalising Lawvere theories Perspectives

Variable binding

We defined products by a property.
Consider any objects A, B ∈ C with finite products;

evC×A B is an exponential of A and B iff ∀ D ∈ C,

ANotation: C = B and h = λf.AIntuition: B = function space, λf = currying of f.
36/44

Generalising Lawvere theories

A

The question Lawvere theories Perspectives

×C B

A×D
f∀

ve

di A×h!∃

Variable binding

We defined products by a property.
Consider any objects A, B ∈ C with finite products;A evB ×A B is an exponential of A and B iff ∀ D ∈ C,

ANotation: C = B and h = λf.AIntuition: B = function space, λf = currying of f.
36/44

Generalising Lawvere theories

A

The question Lawvere theories Perspectives

×BA B

A×D
f∀

ve

di A×fλ!∃

Examples

ASet: B = set of functions A → B.
Gph, graphs: some convoluted construction of rare use (to my knowledge).
Not Top! Have to restrict to compactly generated spaces.
Scott domains. Particular posets, important in denotational semantics.

37/44

Generalising Lawvere theoriesThe question Lawvere theories Perspectives

Cartesian closed categories = products + terminal object +
exponentials

38/44

Generalising Lawvere theories

Definition
Cartesian closed category (CCC):' () a product A×B, π , π for all A, B,

a terminal object 1,A() an exponential B , ev for all A, B.

The question Lawvere theories Perspectives

Variable binding

Remark: L contains more than the usual notion of syntax.λ
Morphisms = simply-typed λ-terms up to βη-conversion.\left_white_square_bracket \left_white_square_bracket () E.g., λx . M is here modelled as lam λx : t . M .

39/44

Generalising Lawvere theories

Synopsis

Models of theories with binding `are' cartesian closed categories.

Example

The syntax for the pure λ-calculus yields a cartesian closed category L :λ
tt×tt () objects are formal powers and exponentials of t, e.g., t ×t, t×t×t ,...

morphisms are formally generated bytlam : t → t and app : t×t → t,
stuff needed for L to be a CCC.λ

The question Lawvere theories Perspectives

Dynamics

To model ()] [λx . M N ↝ M x ↦ N
we could add an equation

\rangle \langle () () app lam λx : t . M , N = λx : t . M N.

We prefer adding a 2-cell:

↝ Cartesian closed 2-categories!

40/44

Generalising Lawvere theoriesThe question Lawvere theories Perspectives

t×t
t×tt t

di t×mal ppa

ve

β

Example reduction

' ' In pure λ, if M ↝ M then MN ↝ M N.
Here, assuming α : M ⇒ N, derive

41/44

Generalising Lawvere theories

Γ
Syntactically\rangle \rangle \rangle \langle \langle \langle ' app α ; id : app M ; N ⇒ app M ; N .N

The question Lawvere theories Perspectives

t×t t
\rangle N,M\langle

\rangle N,M' \langle

ppa\rangle di N,α\langle

Other example reduction

' ' In pure λ, if M ↝ M then λx . M ↝ λx . M.
Here, assuming

derive

42/44

Generalising Lawvere theories

t

Γ
Syntactically ' () () λx : t . α : lam λx : t . M ⇒ lam λx : t . M .

The question Lawvere theories Perspectives

×Γ

tt

t

t

M

M.t
M

:
'

xλ

α

M' .t:xλ
malα.t:xλ

43/44

Generalising Lawvere theories

Proposition

2-cells M ⇒ N≅
reductions up to permutation equivalence (Lévy, late 70's; Bruggink, 2003).

The question Lawvere theories Perspectives

Possible perspectives

More involved examples.
Dynamic properties of 2CCCs (following Hilken).
Dynamic properties of morphisms.
Formal links with other approaches.
Extensions, e.g., dependent types.
Coq library?

44/44

PerspectivesThe question Lawvere theories Generalising Lawvere theories

	
	
	
	The question
	The ladder of abstraction (© Brett Victor): level 1
	The ladder of abstraction: level 2
	The ladder of abstraction: towards level 3
	The ladder of abstraction: level 3
	Level 1: calculi
	Level 2: denotational semantics
	Towards level 3?
	Hence the question
	Fake poll: what is a programming language?
	Fake poll: what is a programming language?
	Fake poll: what is a programming language?
	Fake poll: what is a programming language?
	

	Lawvere theories
	Lawvere theories in 20 slides
	Categories
	Examples
	Cartesian product (!)
	Terminal object
	Finite products = products + terminal objects
	First insight of Lawvere theories
	The category (looking closer)
	 monoid `is' a category with finite products
	The Lawvere theory for monoids
	The Lawvere theory for monoids
	Generalised monoids
	Morphisms
	Functors
	Morphisms
	The Lawvere theory for monoids
	Further example
	Lawvere theories: definition
	What has been gained (quick summary)
	What is missing?

	Generalising Lawvere theories
	Variable binding
	Examples
	Cartesian closed categories = products + terminal object
	Variable binding
	Dynamics
	Example reduction
	Other example reduction
	

	Perspectives
	Possible perspectives

