Le LAMA entretient quatre séminaires réguliers, qui se tiennent normalement dans la salle TLR, premier étage du bâtiment Le Chablais, sur le site du Bourget du Lac. D’une part, trois séminaires hebdomadaires existent :

D’autre part, le séminaire du laboratoire a lieu environ tous les trois mois. Il reçoit une personnalité extérieure de renom, sur des sujets pouvant intéresser des membres de plusieurs équipes, ou bien un nouveau membre du laboratoire.

Le séminaire des doctorants a lieu tous les deux mois environ et accueille un jeune chercheur (doctorant, post-doc ou ATER), du Lama ou de la région, pour une présentation d'une heure accessible à tous.

Le séminaire CMI a lieu tous les mois environ et accueille un chercheur qui vient présenter sa recherche aux étudiants suivants le Cursus Master Ingénieur (CMI).

Enfin, le programme des séminaires des laboratoires de la fédération de recherche en Mathématiques (FRMRAA) peuvent être consultés sur les liens suivants :

Prochains séminaires du LAMA :

EDPs²Vendredi 02 mars 2018 à 14h Tatsuo Iguchi (Keio University),
Isobe-Kakinuma model for water waves as a higher order shallow water approximation

Résumé : (Masquer les résumés)
We consider the initial value problem to the Isobe-Kakinuma model for water waves. As was shown by J. C. Luke, the water wave problem has a variational structure. By approximating the velocity potential in Luke's Lagrangian, we obtain an approximate Lagrangian for water waves. The Isobe-Kakinuma model is a corresponding Euler-Lagrange equation for the approximate Lagrangian. In this talk, we first explain a structure of the Isobe-Kakinuma model and then justify the model rigorously as a higher order shallow water approximation by giving an error estimate between the solutions of the model and of the full water wave problem. It is revealed that the Isobe-Kakinuma model is a much more precise model than the well known Green-Naghdi equations.

GéométrieJeudi 15 mars 2018 à 14h Jean Bapstiste Campesato (Université Aix-Marseille),
À venir

Résumé : (Masquer les résumés)
À venir

LIMDMercredi 28 février 2018 à 10h Eric Goles (Engineering Faculty of the Adolfo Ibanez University, Santiago, Chile),
Dynamics and Complexity of Majority Automata: application to some discrete social models

Résumé : (Masquer les résumés)
A Majority Automata consists of applying over the vertices of a undirected graph (with states 0’s and 1’s) an operator that chooses the most represented state among the neighbors of a vertex. This rule is applied in parallel over all the nodes of the graph. When the graph is a regular lattice ( in one or more dimensions) it is called the Majority Cellular Automata. In this seminar we will study the computational complexity of the following prediction problem: PRED: Given an initial configuration and a specific site initially at state a ( 0 or 1), is there a time step T≥1 such that this site changes state? The complexity of PRED is characterized by the possibility to find an algorithm that give the answer faster than the running of the automata simulation in a serial computer. More precisely, if we are able to determine an algorithm running in a parallel computer in polylog time (class NC). Otherwise, the problem may be P-Complete ( one of the most dificult in class P of Polynomial problems) or … worse. We will applied this kind of results to the discrete Schelling’s segregation model. Also we will present the Sakoda’s Social Discret model.